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Cholesteric droplets accompanied by a topological defect are studied in free standing smectic C� films. We
observed a transition between two droplet-defect configurations with the defect in the film and on the droplet
boundary. We found that the distance between the droplet surface and the topological defect decreases con-
tinuously with increasing temperature and above a certain critical temperature the defect jumps to the droplet
boundary. We relate this stepwise change in the defect position to the change in the anchoring on the droplet
boundary. This transformation leads to a decrease in the interparticle distances in self-organized chains from
droplets. Our simple theory allows us to estimate the value of the anchoring energy.
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I. INTRODUCTION

Liquid crystals are ideal materials for studying topologi-
cal defects. Various inclusions in orientationally ordered liq-
uid crystals typically produce defects and singularities of the
director field easily visible by polarized light microscopy
techniques. All this is related to the anchoring phenomenon,
i.e., the tendency to orient liquid crystal molecules when
they contact the surface of the inclusion. Investigations in
this field became essentially actual in recent years due to the
discovery of strong interaction between inclusions and their
self-organization in liquid crystal media �1–11�. Self-
organization refers to processes where pre-existing compo-
nents �inclusions and companion topological defects in our
case� assemble themselves without external intervention. The
ability to reversibly manipulate the self-aggregation provides
a basis to design microstructures that can be controlled.
These wonderful effects are connected with formation of to-
pological defects in the liquid crystal near inclusions. The
simplest, infinitely strong anchoring assumption, that is, that
the orientation of the liquid crystal is firmly fixed on the
surface, means that the surface imposes boundary conditions
for the orientational field. However it is clear that coupling
for many realistic situations can be weak. For instance, finite
anchoring was found in a smectic film at a layer step forming
the boundary between areas of different thickness �7�. On a
phenomenological level finite anchoring can be described by
adding an appropriate surface potential W to the free energy
of the system. However despite the vast amount of available
literature on interaction and self-organization of inclusions
�1–11� the topic of finite coupling on the inclusion surface is
still full of challenging questions. Mostly two limited cases
were considered theoretically in detail: �a� strong anchoring
�2,12� when topological defects form near the inclusion, �b�
weak anchoring �13,14� when topological defects are not
formed. These limiting cases lead to essentially different be-
havior both for individual inclusions and their assembly. The
aim of our paper is to clarify the behavior for temperature
dependent defect positions at a finite anchoring at the surface

of an inclusion with a topological defect in a thin ferroelec-
tric smectic C� �SmC�� film, in which molecules tilt with
respect to the layer normal �15�.

This deceptively simple problem in fact is a quite compli-
cated one. Even the implementation of numerical methods
has serious problems because one has to treat with a compa-
rable high accuracy two very different length scales �for the
inclusion and the defect� �16,17�. In two-dimensional sys-
tems, like thin free standing films, additional complications
occur. Unlike three-dimensional nematics where orienta-
tional ordering is characterized by a headless unit vector �di-
rector� n with a symmetry n→−n, orientational order in
SmC films is defined in terms of so-called c director which is
a conventional polar vector c �15�. It means that there is no
c→−c symmetry, only combined symmetry of simultaneous
inversions of c and unit vector l orthogonal to smectic layers.
A full theoretical analysis of this problem is very difficult
because one has to deal with highly nonlinear differential
equations in a complex geometry �and besides functional
form of the appropriate surface energy is not known and
thermal fluctuations play a relevant role in two dimensions�.
With all these arguments in mind �and also guided by a de-
sire to make formulas simpler to clarify major features of the
physical behavior� in this work we combine experimental
and semiqualitative heuristic tools.

The problem is well elaborated for SmC in the one con-
stant approximation for infinitely strong surface anchoring.
In this case one can easily find the defect position by simply
equilibrating the forces acting on the defect. It is well known
that in a good approximation to satisfy boundary conditions
on the inclusion surface and at infinity, one has to include at
least two singular points: one singularity outside the inclu-
sion �at a distance rd from the inclusion center� and its virtual
image inside the inclusion at the distance rd�=r0

2 /rd, where r0
is the inclusion radius. This force balance equation for a
singularity with topological charge S �in the case considered
in this paper we are interested in S=−1� reads as
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S�S − 1�
rd

−
S2

rd − rd�
= 0. �1�

On a theory side, this problem was addressed first by Pettey,
Lubensky, and Link �12�. The authors calculated the position
of a topological defect with charge S=−1 near a circular
inclusion in the limit of strong anchoring. The distance scales
with the inclusion radius and equals rd=�2r0.

The question is what effects may change the position of
the topological defect and so influence the structure of the
inclusion-defect pairs and their interaction. Korolev and Nel-
son �18� predicted an essential increase in the average
droplet-defect distance due to anharmonic asymmetry of the
interaction potential between the droplet and the defect. The
effect should depend on the dimensionless ratio �=kBT /K
where K is the orientational two-dimensional �2D� elastic
constant with dimension of energy �erg�. Increase in � from
0 to 1 should lead to an increase in the relative droplet-defect
distance rd /r0 from 1.41 to more than 1.9.

Let us now consider the case of a finite anchoring strength
W �19�. For a finite W we may assume the boundary condi-
tion to be satisfied at a certain smaller than r0 circle. This is
the essence of de Gennes extrapolation length �=K /W. In
our case W is the anchoring energy per unit boundary length.
Formally, for ��0 the c-director deformation can be contin-
ued beyond the inclusion surface to r0−�. In this spirit one
has to put the image defect at rd�= �r0−��2 /rd. Therefore com-
bining everything together we find the equilibrium condition

rd

r0
= �1 −

�

r0
��1 − S , �2�

and for S=−1, rd= �r0−���2. This simple consideration
shows that finite anchoring W decreases the equilibrium
inclusion-defect distance. Certainly the anchoring should not
be too weak �i.e., � must be smaller than r0�, otherwise there
is no need for defects at all. This is our scenario, and al-
though a much more elaborated theory and numeric consid-
eration is needed, as a first semiqualitative approach, we uti-
lize it to confront with experimental observations.

So two opposite effects can be expected in liquid crystals.
In the first one the inclusion and the topological defect are
moving farther apart due to decreasing of the elastic constant
with respect to temperature. The parameter characterizing
this effect is �=kBT /K, that should be of the order of unity
for the effect to be observed. By contrast, in the second one
the topological defect approaches the inclusion due to de-
creasing anchoring on the inclusion surface. The parameter
characterizing this effect is the dimensionless ratio �
=K /Wr0. Both effects have simple qualitative explanations.
If kBT�K the fluctuations of the defect position become
large and the defect-droplet distance increases. If W is much
less than K /r0 the defect must reside on the inclusion sur-
face.

To clarify the question whether the defect position may
differ from the well-known theoretical prediction rd=�2r0
�12� we have performed studies of droplets with companion
defects in a wide temperature range. The results of investi-
gations exceeded our expectations. We found that the dis-

tance between the droplet surface and the topological defect
may change substantially with temperature and the defect
jumps to the droplet boundary above a critical temperature.
We relate this change to the decrease in the anchoring energy
on heating.

II. EXPERIMENT

We investigate droplet-defect pairs in ferroelectric
SmC� free standing films. The liquid crystal used here
is S-4�-undecyloxybiphenyl-4-yl 4-�1-methylheptyloxy�
benzoate �11BMSHOB� �20�. In the bulk sample the se-
quence of phase transitions was SmC�− �108 °C�−N�

− �123.9 °C�− I. Films were prepared by spreading the liquid
crystal in the SmC� phase across a 4 mm circular hole in a
thin glass plate. Films with thickness N from 8 to 30 smectic
layers were used. Due to the surface ordering �21,22� smectic
films exist at the temperature higher than the bulk smectic-
cholesteric transition. In thick films �N�20� at heating the
cholesteric droplets nucleate in the films near the tempera-
ture of the bulk transition from smectic to cholesteric phase.
In thinner films the droplets nucleate at higher temperatures
below the thinning transitions �23,24�. Topological defects
and droplets were observed with an optical microscope in the
reflection mode using depolarized reflected light microscopy
�DRLM� �25� and polarized reflected light microscopy
�PRLM�. The images of the films were taken with a charge-
coupled device camera connected to a computer, then digital
image processing was used.

Dipolar inclusions formed by a droplet �intrinsic topologi-
cal charge S=+1� and a companion S=−1 topological defect
were investigated. It has been shown before that the topo-
logical defect may be situated on the droplet boundary or on
some distance from it in the bulk of the film �26�. In this
paper we focus on inclusions with defects located in the bulk
of the film. Attractive interaction of dipolar droplets with
each other and with Coulombic droplets �26� leads to forma-
tion of various chainlike structures. Interaction between in-
clusions on large and short distances, the interparticle dis-
tances in self-assembled structures critically depend on the
position of the topological defect near the droplet.

III. RESULTS AND DISCUSSION

We found that the position of the topological defect de-
pends drastically on the temperature. At low temperature the
position of the defect is in good agreement with the classical
theory of Pettey, Lubensky, and Link �12� based on the elec-
tromagnetic analogy. This situation is illustrated by Fig. 1�a�.
The orientation of the c director on the droplet boundary is
tangential, that is, the c director is parallel to the droplet
boundary. The defects near isolated inclusions are situated on
the distance rd /r0=1.41�0.02 from the droplet center. We
remind that according to the model with strong anchoring on
the inclusion boundary �12� rd=�2r0.

Figure 1�b� shows dipolar droplets self-organized in a lin-
ear chain with S=−1 topological defects between the drop-
lets. The droplet-droplet distance in chains in which the
droplets are bound by bulk S=−1 defects was numerically
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calculated by Patricio et al. �17� and Korolev and Nelson
�18�. According to their calculations, the distance between
centers of adjacent droplets D equals approximately the same
value D /r0=2.82�0.01 �17� and D /r0=2.878 �18�. The
droplet-droplet separation in the chain in our case �Fig. 1�b��
equals D /r0=2.86�0.05, where r0 is the average radius of
two droplets which is also consistent with the theory for
droplet interaction with strong boundary conditions �17,18�.
The position of the defect between the droplets correlates
with the distance between a single droplet and a defect. If the
droplets are of equal size, the defect is in the middle between
them. The defect situates closer to the smaller droplet when
the droplets in the chain differ in size.

With temperature the configuration of the droplet-defect
pair changes. On heating the separation between the droplet
and the defect diminishes �Fig. 2� and the defect approaches
the inclusion boundary. In Fig. 2�a� the distance from the
droplet center to the defect rd is about 1.41r0. On heating the
distance from the droplet to the topological defect continu-
ously decreases �Fig. 2�b�, rd /r0=1.255�. However at the
temperature of about T=109.1 °C a stepwise transition be-
tween two equilibrium defect positions occurs. At high tem-
peratures �T�109.1 °C� the equilibrium situation corre-
sponds to the defect on the droplet boundary �Fig. 2�c��. The
transition takes some time to occur. At constant temperature
the defect approaches the droplet boundary and resides on it.
The movement occurs within several seconds. Figure 3�a�
shows the temperature dependence of the distance rd /r0.
Closed symbols correspond to equilibrium states. Around T
=108.0 °C the distance is rd /r0=1.41 within the accuracy of
measurements. The dotted arrow shows the transition with a
stepwise change in the equilibrium defect position on heat-
ing. At high temperature �T�109.1 °C� a nonequilibrium
state with position of the defect inside the gap 1�rd /r0
�1.25 can be obtained on rapid heating. Figure 2�d� shows a

nonequilibrium situation when after a rapid heating up to
T=109.2 °C the defect is moving toward the boundary of
the droplet. The nonequilibrium state is shown by an open
circle in Fig. 3�a�. Such dynamic behavior is typical for dis-
continuous, first-order phase transitions, and it is consistent
with observed stepwise jumps of the defect position and hys-
teresis phenomena. Although dynamic studies are likely to be
more fruitful than static equilibrium ones, this field is still in
a rather underdeveloped stage. This is largely accounted for
by a complexity of dynamic nonequilibrium phenomena in
smectic films with inclusions and topological defects. Defect
motion is determined by a subtle interplay of hydrodynamic
backflow and intrinsic dynamics of the orientational order
parameter. We will not consider dynamic phenomena in this
paper deferring detailed investigations to another work.

For samples with some change in the temperature of the
bulk phase transition due to impurities the temperature of the
transition of the defect to the droplet boundary also changes.
At low temperature the defect position corresponding to
strong anchoring could be observed in all investigated
samples.

After the defect resides on the droplet boundary we ob-
served two possibilities of the defect behavior on cooling. If
the heating was only slightly higher than the temperature of
the transition �about 0.1 °C above the transition tempera-
ture� and the defect was on the boundary for a short time
�several seconds� as a rule on cooling the defect left the
droplet boundary and moved back to a distance approxi-
mately equal to that before the transition. Typically a hyster-
esis occurs and in these cases the transition on cooling takes
place at a slightly lower temperature than on heating �the
difference is within 0.1 °C�. If the heating was more suffi-
cient and the film stayed at high temperature for a longer
time �several tens of seconds� as a rule on cooling the defect

FIG. 1. A dipolar droplet-defect pair �a� and a chain of three
droplets �b� in a smectic film. The topological defects are located
between the inclusions. At low temperature the defect is situated at
a relative distance rd /r0�1.41 from the isolated droplet �a�. The
droplet-droplet separation in the chain equals D /r0=2.86 �b�. The
orientation of the polarizer and the analyzer are shown in the lower
part of each frame. T=108.0 °C �a�, T=107.9 °C �b�.

FIG. 2. Optical microscope pictures of dipolar droplets. The
distance from the droplet center to the topological defect near an
isolated droplet decreases with temperature: rd /r0=1.41, T
=108.0 °C �a� and rd /r0=1.255, T=108.9 °C �b�. At higher tem-
perature above T=109.1 °C the defect resides on the droplet
boundary �c�. Frame �d� shows a nonequilibrium situation when on
rapid heating up to T=109.2 °C the defect is moving toward the
boundary of the droplet. This situation corresponds to the open
circle in Fig. 3�a�. The images were taken in DRLM.
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remained on the droplet boundary. In this case the behavior
of the droplet did not differ from the case of a droplet nucle-
ated with a surface defect �26�. So two states of the topologi-
cal defect on the droplet boundary exist: the first state in
which the defect can leave the boundary and the second state
in which the defect does not leave the droplet boundary. We
suppose that the transition between the two states is kineti-
cally driven and takes place when the defect is kept near the
droplet boundary for a long time. The local structure of these
two states is not yet clear, as well as the structure of the
defect core in SmC� films. We may guess that in one case the
core of the topological defect remains separated from the
droplet, whereas, in the other case the core of the defect joins
with the droplet. We may guess also that between these two
states there is a potential barrier which is somewhat higher
than kBT at high temperature �so the transition between two
states may take place�. At large distances the c-director con-
figuration in these two states is similar. At small distances the
van der Waals interaction and ionic impurities may be essen-
tial and play an important role in the interaction and aggre-
gation of the defect and the droplet. At low temperature the
potential barrier becomes substantially higher than kBT. This
explains the existence of dipolar droplets at low temperature

both with boundary and bulk topological defects. At low
temperature we did not observe a transition between them.

Based on our observations �Figs. 2 and 3� we can propose
that the anchoring strength on the droplet boundary W de-
creases with temperature. This suggestion is supported by the
fact that at high temperature a transition from tangential to
radial c-director orientation on the inclusion boundary may
take place �9�. Using our qualitative approach �Eq. �2�� from
the experimental data of Fig. 3�a� the ratio �=� /r0=K /Wr0
was estimated �Fig. 3�b��. This dimensionless ratio shows the
relative interplay of bulk elastic and surface anchoring ener-
gies. The actual c-director orientation is such that the elastic
torque transmitted by the liquid crystal to inclusion surface is
balanced by the surface torque related to the anisotropic sur-
face anchoring. Below 108.2 °C the ratio is �=0 within the
accuracy of measurements. On heating � essentially in-
creases with temperature. From the value of � the surface
anchoring energy may be estimated. Since 2D elastic moduli
and anchoring energy for a film scale approximately like
film thickness, taking the bulk elastic constant to be
2�10−6 erg /cm �27,28� we get that the anchoring strength
for unit boundary area decreases to about 6�10−3 erg /cm2

near the temperature of the stepwise transition. It is worth
noting that this value correlates with measurements of the
anchoring energy of nematic on a solid surface �29,30�.

We found that self-organized structures formed by drop-
lets are also affected by the change in anchoring. A substan-
tial transformation of the interparticle distances with tem-
perature was observed in droplet chains. Figure 4�a� shows a
chain of droplets near the temperature of the stepwise tran-
sition in dipolar droplets. The distance between centers of
droplets separated by the bulk defect �three right droplets in

FIG. 3. Temperature dependence of the defect position near a
droplet in a smectic film �a�. On heating rd /r0 continuously de-
creases until the critical temperature T=109.1 °C above which the
defect sits on the droplet boundary �rd=r0�. The dotted arrow shows
the transition on heating. The open circle shows rd /r0 in a state
above T=109.1 °C that can be obtained on rapid heating. This state
is nonequilibrium; the defect is moving toward the droplet bound-
ary and within a short time sits onto it. Above T=109.1 °C the
stable state corresponds to the defect on the droplet boundary, rd

=r0. �b� The dimensionless ratio �=K /Wr0 calculated from the
measured defect position. At low temperature T�108.2 °C the ra-
tio is �=0 within the accuracy of its determination. The thickness of
the film is about 15 smectic layers. The droplet radius r0 is about
27 	m.

FIG. 4. The distance between droplets in self-organized chains
depends on temperature. At T=108.9 °C �a� the interparticle dis-
tance for the droplets with defect between them is D /r0=2.5 �com-
pare with Fig. 1�b� where D /r0=2.86�. A similar decrease in the
distance between droplet centers is observed in chains with the
defect on the droplet boundary �b,c�. At low temperature T
=108.2 °C �b� the droplet-droplet distance D /r0=2.6. At high tem-
perature T=109.2 °C �c� the droplet-droplet distance D /r0�2.2.
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Fig. 4�a�� decreases to D /r0=2.5, which is consistent with
the decrease in the droplet-defect distance for individual
droplets �Fig. 2�b��. We remind that D /r0=2.86 at low tem-
perature �Fig. 1�b��. The spacing between droplet surfaces in
a chain is about twice the distance from the defect to the
boundary of an isolated dipolar droplet.

We also found that the distance in the chains between
droplets with defects on their boundary changes with tem-
perature. For such droplets at low temperature the distance
between droplet centers in a chain is D /r0=2.6�0.1 �Fig.
4�b��. On heating the interparticle distance decreases �Fig.
4�a�, two left droplets, D /r0=2.3� and becomes D /r0�2.2 at
higher temperatures �Fig. 4�c�, T=109.2 °C�. The decrease
in the interparticle distance in the chains formed by droplets
with boundary defects may indicate a further decrease in the
surface anchoring energy above 109.1 °C. For the chains
with the defect located between the droplets at such tempera-
ture the defect remains in the bulk, although the interparticle
distance decreases. This seems to be related to the attraction
of the defect from two droplets on the opposite sides.

We may speculate about the origin of the observed effect.
On the boundary of the droplet there exists a meniscus of the
smectic phase. The mechanism of the decrease in the anchor-
ing energy may be related to the modification of the menis-
cus with temperature. The c director tends to orient tangen-
tial on the meniscus boundary �smectic layer step�. On
heating, the size of the meniscus decreases and the value of
the anchoring energy may become smaller. We can assume
that the qualitative consideration using the notion of the ex-
trapolation length � is valid if the topological defect is not in
the vicinity of the droplet surface, namely, rd−r0�� /2. In
our case when the defect is in the bulk of the film this con-
dition is fulfilled �Figs. 3�a� and 3�b��. When rd−r0	� /2 our
consideration becomes invalid and the transition of the de-
fect to the droplet surface takes place.

Let us note several other aspects that were not included in
our semiqualitative approach. Whereas in this paper we use
the one constant approximation �which enables to simplify
the analysis� in reality two-dimensional bend and splay elas-
tic constants can differ in several times �27,28,31,32�. This
could influence the equilibrium position of the defect, espe-
cially for small droplet-defect separations. It would be inter-
esting to analyze the director configuration for different val-
ues of the elastic anisotropy, however it will definitely
require employing numerical methods.

Previously the position of a point topological defect near
a spherical inclusion in nematic liquid crystal was calculated
numerically for different surface anchoring �33,34�. The cal-
culations predict that the inclusion-defect separation depends
on the ratio K0 /W0r0, where K0 and W0 are the elastic con-
stant and anchoring energy in the three-dimensional �3D�
system. We remind that K0 /W0 and K /W have the same di-
mension and the same sense. As the value K0 /W0r0 in-
creases, the defect should approach the inclusion �33,34�. To
the best of our knowledge, these theoretical predictions have
not been observed experimentally. According to theory, the
spacing between the inclusion surface and the defect de-
creases in two times with respect to the strong anchoring
limit as K0 /W0r0 increases from 0 to about 0.13 �33,34�. In
our experiments �Fig. 3� the spacing between the inclusion

surface and the defect decreases from 0.41 to about 0.23
when �=K /Wr0 becomes approximately 0.13. So the results
of our experiments correlate fairly well with theoretical pre-
dictions. We should note that calculations were performed
for a 3D system and in the experiment we deal with 2D
geometry of the c director. However, there is essential differ-
ence in the behavior of 3D and 2D systems at further de-
crease in the anchoring. For the 3D system the calculations
predict that at the ratio K0 /W0r0�0.14–0.1 the dipolar con-
figuration with a point topological defect becomes unstable
and a transition to the quadrupolar configuration with an
equatorial defect �Saturn ring� should occur �33,34�. The
transition from the dipolar to the quadrupolar configuration
upon changing the size of inclusion was observed in experi-
ment �35�. The transition related to the change in anchoring
was predicted for 3D nematic but not observed before. In 2D
geometry there is no transition to quadrupolar configuration
in the temperature range of our observations. In our experi-
ment on heating the defect resides on the droplet boundary
�Figs. 2 and 3� but the configuration remains dipolar.

Let us now discuss the possibility for the opposite effect,
namely, increase in the defect-droplet distance predicted by
Korolev and Nelson �18�. Assuming a reasonable accuracy of
measurements, we estimate that this effect can be observed if
�=kBT /K
0.1. In smectic liquid crystals the typical value
of � for a film with thickness N	15 is less than 10−2. Liquid
crystal phases exist in a limited temperature range that does
not allow changing the temperature essentially. So if this
effect exists it may be observed only by means of decreasing
K in the vicinity of the temperatures of SmC−SmA or thin-
ning transitions �23� where the elastic modulus becomes
small.

The properties of the droplet boundary are mainly de-
scribed by two physical quantities: the anchoring energy W
and the surface tension �. A dimensionless ratio W /� shows
the relative importance of the two energies. If W /� changes
with temperature, one would expect a competition of the
anchoring energy and the surface tension with liquid crystal
elasticity �36,37�. If � dominates, it corresponds to the situ-
ation discussed in this paper. The droplets have circular
shape due to the tendency to minimize the length of the
boundary. However, the orientation of the director on the
inclusion boundary for small W may change and the elastic-
mediated repulsion between the droplet boundary and the
defect decreases. In the limit of very small W the companion
topological defects disappear. We remind that the topological
defect can disappear only on the droplet surface. In the op-
posite case of large ratio W /� the droplet shape may differ
from circular, but the director orientation on the boundary
remains planar. Such behavior was observed in films of non-
polar SmC �38�.

In summary, many experimental and theoretical studies
were performed in recent years to resolve challenging ques-
tions of the defect-mediated interaction and self-organization
of inclusions in liquid crystals. The key point of this topic is
the interaction of inclusions with liquid crystal media. Most
theories and numerical simulations are based on the strong
anchoring model of the inclusion boundary that determines
the equilibrium distance between the inclusion and the topo-
logical defect. We demonstrate how temperature influences
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the structure of the dipole formed by the inclusion and the
defect. The distance between the inclusion boundary and the
defect changes and above the critical temperature the defect
resides on the inclusion boundary. This phenomenon,
namely, the stepwise jump of the defect position from the
smectic film to the surface of the inclusion, to the best of our
knowledge, has never been observed before this work. The
interparticle distance in chains formed by the droplets de-
creases substantially with increasing temperature. The
change in the position of the topological defect is attributable
to the competition between elastic and boundary energies.
Our simple model, which uses the notion of the surface ex-
trapolation length, helps to understand the experimental ob-

servations but for a full quantitative description of the data
numerical calculations are necessary. There is also another
challenge in this field, namely, the reason of tangential and
radial director orientation at the droplet boundary in smectic
films. To solve these problems, further theoretical and ex-
perimental efforts are needed.
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